Exercise 38

In a fish farm, a population of fish is introduced into a pond and harvested regularly. A model for the rate of change of the fish population is given by the equation

$$
\frac{d P}{d t}=r_{0}\left(1-\frac{P(t)}{P_{c}}\right) P(t)-\beta P(t)
$$

where r_{0} is the birth rate of the fish, P_{c} is the maximum population that the pond can sustain (called the carrying capacity), and β is the percentage of the population that is harvested.
(a) What value of $d P / d t$ corresponds to a stable population?
(b) If the pond can sustain 10,000 fish, the birth rate is 5%, and the harvesting rate is 4%, find the stable population level.
(c) What happens if β is raised to 5% ?

Solution

Part (a)
Since $d P / d t$ represents the rate of population growth as t increases, a stable population is one for which

$$
\frac{d P}{d t}=0 .
$$

Part (b)

To find the stable population level, set $d P / d t=0, P_{c}=10,000, r_{0}=0.05$, and $\beta=0.04$.

$$
\begin{gathered}
\frac{d P}{d t}=r_{0}\left(1-\frac{P(t)}{P_{c}}\right) P(t)-\beta P(t) \\
0=0.05\left(1-\frac{P(t)}{10000}\right) P(t)-0.04 P(t)
\end{gathered}
$$

Solve for $P(t)$.

$$
\begin{gathered}
0=0.05 P(t)-0.000005[P(t)]^{2}-0.04 P(t) \\
0=0.01 P(t)-0.000005[P(t)]^{2} \\
0=P(t)[0.01-0.000005 P(t)] \\
P(t)=0 \quad \text { or } \quad 0.01-0.000005 P(t)=0 \\
P(t)=0 \quad \text { or } \quad P(t)=2000
\end{gathered}
$$

The stable fish population in this case is 2000 .

Part (c)

To find the stable population level, set $d P / d t=0, P_{c}=10,000, r_{0}=0.05$, and $\beta=0.05$.

$$
\begin{gathered}
\frac{d P}{d t}=r_{0}\left(1-\frac{P(t)}{P_{c}}\right) P(t)-\beta P(t) \\
0=0.05\left(1-\frac{P(t)}{10000}\right) P(t)-0.05 P(t)
\end{gathered}
$$

Solve for $P(t)$.

$$
\begin{gathered}
0=0.05 P(t)-0.000005[P(t)]^{2}-0.05 P(t) \\
0=-0.000005[P(t)]^{2} \\
0=[P(t)]^{2} \\
P(t)=0
\end{gathered}
$$

If β is raised to 5%, there won't be a stable fish population.

